

BUBBI

Short Course on Nonlinear Acoustics Part I

22nd ISNA 4th July 2022

Robin Cleveland

Institute of Biomedical Engineering

Department of Engineering Science

Outline

OBUBBL

- 1. Nonlinearity
- 2. Distortion and Harmonic generation
- 3. Shock formation
- 4. Weak shocks
- 5. Burgers Equation
- 6. Taylor shock thickness
- 7. Diffraction effects: Westervelt and KZK equation

BUBBL

David T Blackstock (1930-2021)

Fluid Dynamics Equations

<u>eubel</u>

Conservation of Mass (continuity)

$$\frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{u} = \mathbf{0}$$

Conservation of Momentum (Compressible Navier Stokes)

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla \mathbf{P} + \mu \nabla \cdot \nabla \mathbf{u} + \left(\mu_{\mathrm{B}} + \frac{\mu}{3}\right) \nabla (\nabla \cdot \mathbf{u})$$

Equation of State

$$P = P(\rho, s)$$

Thermodynamics

$$\rho \frac{\partial s}{\partial t} = \kappa \nabla^2 T + loss$$

- *P* Total pressure
- ρ Density
- **u** Particle velocity
- μ Shear viscosity
- $\mu_{\rm B}$ Bulk viscosity
- s Entropy
- **κ** Thermal conductivity
- T Temperature

Finite-Amplitude Acoustics

BUBBL

Sound wave is a perturbation on background properties

 $P = \overline{p_0 + p}$ $\rho = \rho_0 + \rho'$ $\mathbf{u} = 0 + \mathbf{u}$

Conservation of Mass (continuity)

$$\frac{\partial \rho_0}{\partial t} + \frac{\partial \rho'}{\partial t} + \rho_0 \nabla \cdot \mathbf{u} + \rho' \nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \rho' + \mathbf{u} \cdot \nabla \rho_0 = 0$$

Conservation of Momentum (Compressible Navier Stokes)

$$\rho_0 \frac{\partial \mathbf{u}}{\partial t} + \rho' \frac{\partial \mathbf{u}}{\partial t} + \rho_0 \mathbf{u} \cdot \nabla \mathbf{u} + \rho' \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p_0 - \nabla p' + \mu \nabla^2 \mathbf{u} + (\mu + \lambda) \nabla (\nabla \cdot \mathbf{u})$$

Acoustic Mach Number

Second Order Wave Equation

Keeping up to second order terms

$$\nabla^2 p - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = -\frac{\beta}{\rho_0 c_0^4} \frac{\partial^2 p^2}{\partial t^2} - \frac{\delta}{c_0^4} \frac{\partial^3 p}{\partial t^3} - \left(\nabla^2 + \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) \left(\frac{\rho_0 u^2}{2} - \frac{p^2}{2\rho_0 c_0^2}\right)$$

Naze Tjøtta and Tjøtta JASA 69:1644 (1981).

≈0 Lagrangian Density

Westervelt JASA (1963).

- *p* acoustic pressure
- c0 small signal sound speed
- ρ 0 density
- β coefficient of nonlinearity
- $\delta \quad \mbox{diffusivity of sound; thermal} \\ \mbox{conduction and viscosity}$
- u particle velocity

Continuity

$$\beta = 1 + B/2A$$

State
1.2 air
3.5 water
5 tissue

Lossless Progressive Plane Waves

Progressive:

$$\frac{\partial p}{\partial x} - \frac{1}{c_0} \frac{\partial p}{\partial t} = \frac{\beta}{2\rho_0 c_0^3} \frac{\partial p^2}{\partial t} + \frac{\delta}{2c_0^3} \frac{\partial^2 p}{\partial t^2}$$

Lossless:

$$\frac{\partial p}{\partial x} = \frac{\beta}{2\rho_0 c_0^3} \frac{\partial p^2}{\partial \tau}$$

. . . .

$$\tau = t - \frac{x}{c_0}$$

Nondimensionalise

$$P = p / p_0$$
$$\theta = \omega \tau$$

Characteristic pressure

$$\frac{\partial P}{\partial x} = \frac{\beta \omega p_0}{\rho_0 c_0^3} P \frac{\partial P}{\partial \theta}$$

Poisson Solution

$$P(\theta) = f\left(\theta + \frac{\beta \omega p_0}{\rho_0 c_0^3} x f(\theta)\right)$$
$$= f\left(\theta + \sigma f(\theta)\right)$$
$$P\left(\theta' - \sigma f(\theta)\right) = f(\theta')$$

$$\sigma = \frac{\beta p_0 \omega x}{\rho_0 c_0^3} = \beta \varepsilon k x$$

Acoustic Mach Number

Matlab

%Poisson solution theta=linspace(-pi,pi,30); ps=sin(theta);

sigma=1;

tdistort=theta-sigma*ps;

plot(tdistort,ps,'o',theta,ps,'.');

Excel

	A	В	С
1	Numpts		Sigma
2	30		1
3			
4	theta	ps	tdistort
5	-3.1415927	-1.225E-16	-3.1415927
6	-2.9321531	-0.2079117	-2.7242415
7	-2.7227136	-0.4067366	-2.315977
8	-2.5132741	-0.5877853	-1.9254889

=A5+4*ASIN(1)/A\$2 =SIN(A6) =A6-C\$2*B6

Poisson Solution

BUBBL

Harmonic Generation

Fubini Solution

<u>eubel</u>

Sinusoidal source and Poisson solution

 $P = \sum_{n=1}^{\infty} B_n(x) \sin(n\omega\tau)$

At x=0 B1=1 all other Bn = 0.

$$B_n(\sigma) = \frac{2}{n\sigma} J_n(n\sigma)$$

Weak Shock Theory

BUBBL

Smooth parts treated with **Poisson Solution** Discontinuities treated with the **Shock Condition**

Harmonic Generation

<u>elibel</u>

 $\sigma <<1$ Neglect nonlinearity $\sigma < 1$ Nonlinearity important $\sigma > 1$ Shocks form

Pulses

Limitations of Weak Shock Theory

BUBBI

Shocks must be "thin" - that is appear as discontinuities.

Propagation distance must be SHORTER than the absorption length in medium

$$x < 1/\alpha$$

$$\overline{x} << 1/\alpha$$

$$1 << \frac{\beta \varepsilon k}{\alpha} = \Gamma$$

Gol' dberg number

Thermoviscous fluid:

Absorption coeffecient:

δ diffusivity of sound;
 thermal conduction
 and viscosity

Burgers Equation

BUBBL

Include absorption but assume progressive plane waves:

$$\frac{\partial p}{\partial x} = \frac{\beta}{2\rho_0 c_0^3} \frac{\partial p^2}{\partial \tau} + \frac{\delta}{2c_0^3} \frac{\partial^2 p}{\partial \tau^2}$$

Dimensionless:

$$\frac{\partial P}{\partial \sigma} = \frac{\partial P^2}{\partial \theta} + \frac{1}{\Gamma} \frac{\partial^2 P}{\partial \theta^2}$$

$$\sigma = \beta \varepsilon kx$$

$$\theta = \omega_0 \tau$$

$$\Gamma = \frac{\beta \varepsilon k}{\alpha}$$

$$\alpha = \frac{\delta \omega_0^2}{2c_0^3}$$

Gol' dberg number

Hopf-Cole Transformation

Hopf-Cole transformation yields an exact solution to Burgers equation. But still involves evaluating integrals.

Sinusoidal source wave produces an infinite sum over incomplete Bessel functions.

Burgers equation is more easily solved by numerical solutions in either the time or frequency domain.

Numerical: Time Domain Solution

BUBBL

Artificial absorption

Numerical: Frequency Domain

BUBBL

$$P(\sigma,\theta) = \sum_{m=1}^{M} \left(P_n(\sigma) e^{jn\theta} + P_n^*(\sigma) e^{-jn\theta} \right) / 2$$

Coupled Ordinary Differential Equations

$$\frac{dP_n}{d\sigma} = -An^2 P_n + j\frac{n}{4} \left(\sum_{m=1}^{n-1} P_m P_{n-m} + \sum_{m=n+1}^{M} P_m P_{m-n}^*\right)$$

Multiplication -> Fast ☺ Convolution -> Slow ⊗

Gamma=20 NHAR=50

BUBBL

Gamma=20 NHAR=5

<u>eubel</u>

Harmonics not absorbed and reflected back

24

What is a Shock Wave?

Speed: $c=c_0+\beta p/\rho_0 c_0$

 β coefficient of nonlinearity (5) ρ_0 density (1000 kg/m³) p acoustic pressure

Nonlinearity Steepens the Wave Absorption Smooths the Wave

Progressive plane wave in retarded frame

$$\frac{\partial p}{\partial x} = \frac{\beta}{2\rho_0 c_0^3} \frac{\partial p^2}{\partial \tau} + \frac{\delta}{2c_0^3} \frac{\partial^2 p}{\partial \tau^2}$$

Taylor Shock

<u>eubei</u>

Stationary solution

$$p = \frac{\Delta p}{2} \left(1 + \tanh\left(\frac{\beta \Delta p}{2\rho_0 \delta}\tau\right) \right)$$

δ diffusivity of sound (thermoviscous absorption)

Taylor shock thickness:

$$t_{RISE} = \frac{4\rho_0\delta}{\beta\Delta p}$$

n water:
$$t_{RISE}\Delta p=0.005 Pa.s$$

=5 ns.MPa

Arbitrary Attenuation

BUBBL

Frequency domain

$$\frac{\partial P(\omega)}{\partial x} = -\alpha(\omega)P(\omega)$$

$$\frac{dP_n}{d\sigma} = -A_n P_n + j \frac{n}{4} \left(\sum_{m=1}^{n-1} P_m P_{n-m} + \sum_{m=n+1}^{M} P_m P_{m-n}^* \right)$$

But A_n MUST be causal. The real and imaginary parts (attenuation and dispersion) must satisfy the Kramers-Kronig relations. For example for power law: f^y

$$A_{n} = A_{1}n^{y} \left(1 + j \left(1 - n^{1-y} \right) \tan(\pi y / 2) \right)$$

Wallace et al JASA 1991

Power Law Attenuation and Dispersion

Kramers-Kronig Relations

$$\bar{\alpha} = \alpha_0 \omega^n$$

Szabo, J. Acoust Soc. Am. 97:14 (1995) Waters et al JASA 108:556 (2000).

$$\frac{1}{c(\omega)} = \frac{1}{c(\omega_0)} + \alpha_0 \tan(n\pi/2) \left(\omega^{n-1} - \omega_0^{n-1}\right)$$

=1
$$\frac{1}{c(\omega)} = \frac{1}{c(\omega_0)} - \frac{2}{\pi}\alpha_0 \ln\left(\frac{\omega}{\omega_0}\right)$$

n=2

Attenuation - Time Domain

Frequency domain

Time domain

$$\frac{\partial P(\omega)}{\partial x} = -\alpha(\omega)P(\omega) \Leftrightarrow \frac{\partial p(\tau)}{\partial x} = h(\tau) * p(\tau)$$

Convolution -> Slow ⊗

Attenuation via Relaxation Processes

$$\frac{\partial p}{\partial z} = \frac{\beta}{2\rho_0 c_0^3} \frac{\partial p^2}{\partial \tau} + \frac{\delta}{2c_0^3} \frac{\partial^2 p}{\partial \tau^2} + \sum_{\nu} \frac{c_{\nu}'}{c_0^2} \int_{-\infty}^{\tau} \frac{\partial^2 p}{\partial t''^2} e^{-(\tau - t'')/t_{\nu}} dt''$$

Thermoviscous Absorption Relaxation Process t_v relaxation time c'_v dispersion

러미러러

Example for Biomedical Ultrasound

Diffraction

Focal lengths 10-150 mm

Absorption

Soft tissue 0.3 dB/cm/MHz

At 1 MHz length scale 30 mm

Nonlinearity

Plane wave shock formation distance in tissue

$$\overline{x} \approx \frac{100}{p_0 f} \text{ mm} \cdot \text{MPa} \cdot \text{MHz}$$

At 1 MHz and 3 MPa length scale 30 mm

Self-consistent absorption model

- Models for attenuation are empirical and account for both absorption and scattering
- Nonlinear harmonics have shorter wavelengths therefore length scale for sub-wavelength scatters decreases
 - 1500 µm wavelength 10 µm is small
 - 30 µm wavelength 10 µm is not small

Westervelt Equation

1 MHz: wavelength of 1500 μm
15 harmonics: wavelength of 100 μm
Volume = 150 mm x 80 mm x 80 mm
Propagation x Lateral Dimensions
Finite-difference 5 μm voxel size
•40,000 x 16,000 x 16,000 = 10,000 billion voxels
•Remember 4 time steps
•40,000 billion numbers = 160,000 GB (single float)
•Time step 3 ns

150 mm needs 30,000 steps:5 point stencil 12 FLOPS/step: 58 000 petaFLOP

Supercomputers Frontier 1102 petaFLOPS (June 2022) Summit 122 petaFLOPS (June 2018)

BUBBI

3 harmonics 4 points per wavelength Memory reduction: 25³ = 16,000

10s GB

150 teraFLOPs

Treeby and Cox UCL **KZK Equation** Zabolotskaya and Khokhlov, Sov. Phys. Acoust. 1969 Kuznetsov, Sov. Phys. Acoust. 1971.

Diffraction in Parabolic Approximation: angles < 20°

Nonlinear propagation in water

OBUBBL

KZK and experiment

Averkiou and Hamilton, JASA 1995 35

Power Lost due to Attenuation

$$\begin{array}{c|c}
 & & & \\
\hline & & \\
I_1 = \frac{\hat{p_1}^2}{2Z} \\
\end{array} \\
\begin{array}{c}
 & \Delta x \\
\hline & \\
I_2 = \frac{\hat{p_1}^2}{2Z} e^{-2\alpha\Delta x} \\
\end{array}$$

$$\frac{I_1 - I_2}{\Delta x} = 2\alpha I \quad \text{W/m}^3 \quad \text{Power/Volume}$$

BUBBL

In general

$$q_s = -
abla I$$
 W/m³ Heat transfer rate

Pennes Bioheat Transfer Equation (BHTE) * H. H. Pennes, Journal of Applied Physiology, 2: 93-122, 1948

$$\rho_t C_t \frac{\partial T}{\partial t} = K_t \nabla^2 T - w_b C_b (T - T_\infty) + q_s \qquad q_s = -\nabla L$$

Conduction Perfusion Where c_T is the specific heat of the tissue ~4000 J/kg/K

Neglected: conduction and convection (perfusion by blood).

 \cap

At 1 MHz and 1MPa

$$\frac{\Delta T}{\Delta t} = \frac{\alpha \hat{p}^2}{\rho^2 c_v c}$$

Recap

• Fluid equations:

 Nonlinear effects are cumulative Shock formation distance:

$$\overline{x} = \frac{\rho_0 c_0^3}{\beta p_0 2\pi f}$$

• Shock rise time:

$$t_{RISE} = \frac{4\rho_0 \delta}{\beta \Delta p}$$

- Model equations:
 - Burgers
 - KZK
 - Westervelt

Artifacts:

Time: smoothing of shocks Frequency: harmonic reflections

• Full modelling of diffraction, nonlinearity, absorption and heterogeneity is numerically challenging

BUBBL

Focused Source

BUBBL

Length scales: Focal length Nonlinear Absorption Diffraction

$$\sigma = z / z_F$$

$$P = p / p_0$$

$$R = r / a$$

$$\theta = \omega \tau$$

$$\frac{\partial P}{\partial \sigma} = \frac{1}{4G} \int_{-\infty}^{\theta} \left(\frac{\partial^2 P}{\partial R^2} + \frac{1}{R} \frac{\partial P}{\partial R} \right) d\theta' + NP \frac{\partial P}{\partial \theta} + A \frac{\partial^2 P}{\partial \theta^2}$$

Literature

BUBBI

L.E. Kinsler, A.R. Frey, A.B. Coppens and J.V. Sanders, Fundamentals of Acoustics, John Wiley & Sons, New York, 2000 (ISBN: 0-471-84789-5)

D.T. Blackstock, Fundamentals of Physical Acoustics, John Wiley & Sons, New York, 2000 (ISBN: 0-471-31979-1)

A.D. Pierce, Acoustics: An Introduction to Its Physical Principle and Applications, (ASA-AIP, 1994)

Rudenko O.V., Soluyan S.I. Theoretical foundations of non-linear acoustics. Moscow: Nauka, 1975.

Nonlinear Acoustics, ed by M. F. Hamilton and D. T. Blackstock (Academic Press, San Diego, 1998), 66-106. Duck FA. Physical properties of tissue: A comprehensive reference book. London: Academic Press, 1990.

Hill C.R., Bamber J.C., ter Haar G.R. Physical Principles of Medical Ultrasonics, John Wiley&Sons, 2004.

T.L. Szabo, Diagnostic Ultrasound Imaging -Inside Out, Elsevier Academic Press, Boston, 2004 (ISBN: 978-0-12-680145-3)

Frederick W. Kremkau. Diagnostic Ultrasound: Principles And Instruments, Peter N.T. Wells. Advances in Ultrasound Techniques and Instrumentation. W.B. Saunders Co Ltd 1993