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Longitudinal and Shear Waves



106 Efastic Waves §26

Finally, we may briefly discuss how we can set up the equations of motion, allowing for

the anharmonic terms. The strain tensor must now be given by the complete expression
(L3)

Landau theory for isotropic solids

§26 Anharmonic vibrations 107

quadratic and cubic in u, with scalar coefficients (since the body is isotropic), is
& = pupt+ (K - 1ug? + § Augugu, + By 2oy + 4w,

the coefficients of vy, and u, * have been expressed in terms of the moduli of compression and rigidity,and 4, B, C
are three new constants. Substituting the expression (26.1) for u,, and retaining terms up to and including the

1/dw du, Ow Oy,
U=z ls—ts"+5s5 ) (26.1) third order, we find the elastic energy 10 be
230x, 0x; Ox;9x, Y a2
W By f]
in which the terms quadratic in #; can not be neglected. Next, the general expression for the £=du (ﬁ_x. * EZ) +EK-4w) (a_x,) *
energy density} £, in bodies having a given symmetry, must be written as a scalar formed 14 B, du, By, CdBEK—3 )a.,, ( au )z
from the components of the tensor uy and some constant tensors characteristic of the Hat )dxlﬁxiﬁx. ¢ W ax\an,
substance involved; this scalar will contain terms up to a given power of ;. Substituting dw, du, Juy du; du, duy au\®
; e : : +iA———+iB————+iC| = .

the expression (26.1) for u,, and omitting terms in u, of higher orders than that power, we Bx, 8, 9x, ax, 0x; dx 2%

find the energy & as a function of the derivatives du,/@x, to the required accuracy.
In order to obtain the equations of motion, we notice the following result. The variation
& may be written

Five elastic constants describe nonlinear

o : . .
o, putting (@w/x) - ox propagation of (quasi-plane) compressional
i}
% = 5w ony (26.2) waves,
8 = 02 20y -5u, 20 * two “second order” elastic constants

The coeflicients of —éw; are the components of the force per unit volume of the body.

(shear modulus ¢ and bulk modulus K),
They formally appear the same as before, and so the equations of motion can again be d
written an

polly = oy fOx,, {26.3) 7% ” .
where pq is the density of the undeformed body, and the components of the tensor o, are * t h ree t h | rd 0 rd er € I d St IC con Sta nts
(A, B and C).

now given by (26.2), with & correct to the required accuracy. The tensor gy is no longer
symmetrical.
e Coefficient of nonlinearity for plane
compressional (longitudinal) waves:

Tt should be emphasized that o, is no longer the momentum flux density {the stress
tensor). In the ordinary theory this interpretation was derived by integrating the body
force density 8a;,/0x, over the volume of the body. This derivation depended on the fact
that, in performing the integration, we made no distinction between the coordinates of
points in the body before and after the deformation. In subsequent approximations,
however, this distinction must be made, and the surface bounding the region of integration
is not the same as the actual surface of the region considered after the deformation. 3

It has been shown in §2 that the symmetry of the tensor 6, is due to the conservation of
angular momentum. This result no longer holds, since the angular momentum density is B l
not x;tiy, — x,t; but (x; + u; )i, — (x, + uy ). 2

A+3B+C
p+ 3K

PROBLEM
Write down the general expression for the clastic energy of an isotropic body in the third approximation.

SowuTioN. From the ponents of a trical tensor of rank two we can form two quadratic scalars
{u,” and uy? ) and three cubic scalars (w,?, u;u,,* and vy uyuy). Hence the most general scalar containing terms

1 We here use the internal energy £, and not the free energy F, since adiabatic vibrations are involved.

Landau and Lifshitz, Theory of Elasticity



Collinear wave interaction with quadratic nonlinearity in an
isotropic solid (Gol'dberg 1961)

For particle displacement field
u(z, t) =iux(x, t) 4+ juy(z, t) 4 ku, (2, ?),

the equations for plane wave propagation of u,, u,, and u, components
In the x direction are

z . z

Y |
' Ox? ox

dx2 Oz

J%u 0%u Pu.. ou ( 32u.u - ou 0%u ou )
T '

X ac___ X . X
Pog — % gz =[P 5 s T

A plane shear wave (u,) can generate, via quadratic nonlinearity, a
longitudinal wave (u,)

2 2
auz auz

Po 5z B o2 =

X

i | "
0x? or ' Ox? dx

( u, | ou 0%u,, 6uz )

where |
a=K+4p, B=3u+24+6B42C, y=a+ 5 +B



Collinear wave interaction with quadratic nonlinearity in an
isotropic solid (Gol'dberg 1961)

For particle displacement field
u(z, t) =iux(x, t) 4+ juy(z, t) 4 ku, (2, ?),

the equations for plane wave propagation of u,, u,, and u, components
In the x direction are

u 0%u u.. du 0%u, Ou O%u ou )
x x x x /) . Y £ . z
o~z * oz —'B ox dx +T( dz2  odx ' Ox? ox )’
ou, o, u, ou,  Ou, ou, )
Po3r Mo =T\ " "oz T o2 oz /I

A plane longitudinal wave (u,) cénnot by itself generate a
shear wave (u,)

where |
a=K+4p, B=3u+24+6B42C, y=a+ 5 +B



Collinear wave interaction with quadratic nonlinearity in an
isotropic solid (Gol'dberg 1961)

For particle displacement field
u(z, t) =iux(x, t) 4+ juy(z, t) 4 ku, (2, ?),

the equations for plane wave propagation of u,, u,, and u, components
in the x direction are

Nu 0%u u.. du %u, Ou O%u ou )
x x x x /) . Y £ . z
o~z * o T p ox? dx T ( dz2  odx ' Ox? ox )’
ou, o, u, ou,  Ou, ou, )
Po 5 Moz =T\ o2 " 6z T oz2 oz ’

Finally, a plane shear wave (u,) cannot, by itself, generate
another shear wave (u,), for example a second harmonic,

through quadratic nonlinearity
where

a=K+4p, B=3u+24+6B42C, y=a+ 5 +B



Alternative notation for third-order elastic constants

RELATIONS BETWEEN THIRD-ORDER ELASTIC CONSTANTS FOR ISOTROPIC SOLIDS

Toupin & Murnaghan Bland Eringen & Standard, cj;x
Bernstein (1951) (1969) Suhubi

(1961) (1974)

V1=2C J=B+C a——"%C IE=%A+B+%C Clg3=2c 0111=2A+6B+2C
Vz'_B m=%A+B )828 m‘gz——A—-ZB C]44'"-—-‘B 61]2=23+2C
V3=%A n=JA ‘Y=%.A HEZA C456=%A C166=%A+B

Norris, Chap. 9, Nonlinear Acoustics (2008)



Burgers and KZK equations for compressional waves

Burgers equation (Mendousse 1953, Lighthill 1956) for
compressional waves:

ov, /3l v, N 0 0%, ~ Oug
0: & For 23 oarr  F T or

T=1—2/q

KZK equation for quasi-plane compressional waves in diffracting beams
(Zabolotskaya, Sov. Phys. Acoust. 1986):

ov, /3l v, b 0%v, ¢ / T

0z 87‘ i 2—0? 072 * 2 (Vva)d

— 00

Coefficient of nonlinearity:

s (3, A+3B4C
L 2 p+ K

* Whereas the coefficient of nonlinearity is positive for fluids, it can
be negative for some solids, such as fused quartz




Numerical solution in frequency domain as for fluids

Dimensionless form:
oV v oV, N iam
do 7 00 ' 062

Expand V. in Fourier series:

| N
=3 Z V(o)™ + c.c.

N coupled spectral equations obtained:

2
m=1 ‘ m= n—l—l‘
sum frequency difference frequency
generation generation

* Easily solved by Runge-Kutta
* Arbitrary absorption and dispersion taken into account by
replacing coefficient n?/T" with (4,,+jD,) .

- N



A cautionary word about ad hoc power law attenuation

Arbitrary attenuation and dispersion introduced:

(ZV Vi—m + 2 Z ViV, >(An+]Dn)Vn

m=n-+1
Power law attenuation that satisfies Kramers-Kronig relation:

a(w) = dyw cos(vﬂ), L = i + 6,0 sm(m).
‘ ‘ 2 C(a)) Ll 2

Multivalued solutions are predicted by original model equation in

time domain for v > 1 and sufficiently small 6,,. In the left plot

a = a(w)xg, and xg, is the shock formation distance:

1

() L (a)
0.8 Single-valued
solutions 0.5;

0.6¢
kE:

0.4¢ Multivalued
solutions

0.2}

0 N Cormack and Hamilton
R ¥ 0 T (Wave Motion 2019)




Noncollinear wave interaction in an isotropic solid

ki + ko =

Interaction cases which produce a scattered wave.?

Resonant Direction
) wave type of Frequency
Primary waves and scattered cos ¢ limits®©
frequency wave
Two transverse Longitudinal k; + k9 2, (02 - l)(az +1) 1-c gl 1+¢
() +wy) ¢ 2 1+c *1-¢
Two longitudinal  Transverse k1 - k2 2 N (cz - 1)(.&12 +1) 1-¢ < <1 +0
W - ool T D T+e 0 T-
j =&
One longitudinal  Longitudinal kl +ky a( e 1) ?
g2t o2 i Coa—
and one i ((..}1 + {,..12] c e a -0
transverse
One longitudinal ~ Longitudinal  k; -k a(l - c2) 2c
g 0<a<
and one (W) -wy) S ¢ 2¢ (1+¢)
transversed 1 =4
s . 2 =
0;:dlzl:ige1tudmal sz:svei‘s; ) ki -kp i_ ;e 2“.” 1-c¢ 2 <1 +c
1~ Gy —
transversed 1~ %2

3From Jones and Kobett [9].(1963)
h¢- is the angle between k; and k, at resonance; a is the frequency ratio (.02;’0.}2; cis

velocity ratio ctrf"clong'
“When a is within the limits shown, it is possible to choose an angle ¢ that will give a scat-

tered wave.

dThe frequency of the longitudinal primary wave is Wy



Noncollinear wave interaction in an isotropic solid

ki + ke = ki These relations are often expressed as conservation
of quasi-momentum and energy of phonons:

hk, + hky = hks quasi-momentum
hwi + hwy = hws energy

* Noncollinear interaction required for resonant
mode conversion because of difference in shear
and compressional wave speeds

* Noncollinear interaction required for resonant
interaction in optics because of strong
dispersion associated with material nonlinearity




Collinear wave interaction in an anisotropic solid

x (SH)
x SH motion *
z Propagation direction uloT?_\\; Y (SV)
! —
—
Fiber direction in y-z plane %20
8 '
transversely isotropic solid Y SV motion s only SH
S primary
Interacting fundamental Second harmonic ﬁ 2 wave _
components polarization E N aVaVaVaVaVaVaVa
] . . - 2 2
* Inter-modal interaction is 2. 0 ........ g e o )
inefficient because of SH . sV >H Q4 j
difference in propagation > - 2 .l (c) uro/uzp = 1
speeds B | sk BV
E 4t
B o R B . S o
+ Second harmoni =
econd harmonic SH SH SV 5
generation from a source + | —> € o 2 4
with both SH and SV 2 2/ Ay
components: Bl g o e e
- ™ § 5 {only SV
« OnlySV+SV=8V —> || sv sv sv % ,|Primary
interaction is efficient —> |H —> |- | «e—> o VS
..... g o o o
\L ) 0 2 4

Cormack (JASA 2021) : Z/M@



Measurement of TOE constants (A,B,C): Acoustoelasticity

For compressional waves in an isotropic solid there are 5 elastic
constants (u,K,A,B,C) through 3™ order in the strain energy density:

E=ul+ (5K —ip)li +:Al; + BL I, + :CI}

Application of stress g changes the 3 wave speeds, as a function of
TOE constants, relative to the equilibrium state (expressed here in
terms of the 2"d order Lamé constants A and y instead of y and K):

V.)’=\+2 i )\A-E-ZB 1 )\)-E-ZC al
2y T = 1 iy B+\+2 w
2= p— —|1+=—|+B+r+
PV =r= a2\ T2, & \
dxa _ ag B ﬂ - | l = Storage of A‘scqns & signal
p(Vg ) _ /u’ 3h+ 2# 2M +B 2)\ : processing

' “ £ i
' k !
' f7 o
£ |
2 & |

R

The 3 wave speeds (1 compressional and St i

phantom

2 shear) permit determination of (A,B,C)

Generator
(50 Hz pulse)

Catheline, Gennisson, and Fink (JASA 2003) | | c




Measurement of TOE constants (A,B,C):
Results for soft elastic media

TABLE I. Elastic moduli measured in three Agar-gelatin-based phantoms.

(K =+ %,UJ) Linear second-order elastic moduli Nonlinear third order elastic moduli
(Lame coefficients) (Landau coefficients)
A i) A B C
Phantom # GPa) (kPa) (kPa) (GPa) (GPa)
1 2.25 90+0.2 —64+13 — 1243 246
2 225 6.35£0.04 —= 017 —{g+2 3l E3
3 2.25 9.67+0.06 —68+3 —26t2 674

Catheline, Gennisson, and Fink (JASA 2003)

From these results one observes that for soft elastic media

f, A _
A=0(p O(KBC)~105

These relations are used to simplify the coefficient of nonlinearity for
shear waves



Compressional versus shear waves

Compressional Wave Shear Wave

Compression and rarefaction “Positive and negative” phases have
(“positive and negative”) phases the same physical properties apart
have different physical properties that from “up versus down,” a symmetry
are affected differently by quadratic that causes quadratic nonlinearity to
nonlinearity have no effect on plane waves

https://acoustics.byu.edu/animations-propagation#poissons-ratio




Shear waves: Elastic energy density required at fourth order

For shear waves to account for cubic nonlinearity, the strain energy
density requires 9 independent elastic constants through fourth
order (Zabolotskaya 1986):

E = uly + (%K — %,LL)]% 2"d order in strain
+ %A[g + B1i1, + %le 3rd order in strain
+ELI+ FIPL + GI; + HI} 4t order in strain

For a plane shear wave the cubic Burgers equation is (see Lee-Bapty
and Crighton 1987)

vy & 5 0V, 5 0%v,

0z ¢ "oy i 27 012 T=t-z/a

and the coefficient of nonlinearity is

3 4 (K + 2u+ sA+ B)?
= — | K+ - A+ 2B+ 2G — 5 2
B 1 |t gutAt2B KT i,




Shear waves in soft elastic media

Again, the energy density through fourth order is
E = ply + (%K — %,LL)]% 2nd order in strain
+ 1AL+ BLL + :CIL} 3rd order in strain
+ELIs+ FI?I, + GI; + HI} 4% order in strain

For soft elastic media (e.g., tissue) it was found that (Catheline et al.
2003)
. /ua A —h
A= O(u) O(K,B,C) 10

For shear waves in soft elastic media only 3 elastic constants are
needed, 1 at each order:

The coefficient of nonlinearity for a plane shear wave then reduces to

3 1A+ D
&:_O+2u )

Hamilton, Ilinskii, and Zabolotskaya (JASA 2004)




Experimental confirmation in soft solid

Catheline, Gennisson, Tanter, and Fink (PRL 2003)

Source frequency: 100 Hz
Source amplitude: 0.6 m/s
Wave speed: 1.6 m/s

(acoustic Mach number = 0.38)
Measurement distance: 15 mm
Nonlinearity is cubic

a)
1
- ‘ Experiment
= 0.8
2
[}
EO'
=]
E
< 0.2 J
o AN -
100 200 300 400 500 600 700 800
b)
1
Simulation
308
=
206
=
=04
g
<
02

MOA

100 200 300 400 500 600 700 800

Frequency (Hz)

Particle velocity

Particle velocity

(m.s™)

(m.s™)

Vibrator

Generator
(100 Hz)
Accelerometer
Agar-gelatin phantom Oscilf;scope
Experiment
0 Time (s) 0.1
Simulation

0 Time (s) 0.1



Shear wave beams

Coupled equations for a shear wave beam are

cubic terms

(

O,

\

)
ou,,

82'&3; Ct —9 1 A ﬁt 0
— x — (1 - T
0201 2 Vita + 2¢; ( * 4,u)Q al 3¢; OT
82uy Ct —9 1 A 515 0
= — e ]_ —_ -
0201 2 Vity + 2¢y ( * 4,u> Cua 3c¢; OT
where u is particle displacement.
Oy — 82145 Ou,  0%u, du, P 0*u, Ou,
or? Ox ot? Oy yoT Ot
| Puy OuyOPug 0w, OPuy Ouy,
Oyor Ot or? dy  0xOT OT

\

guadratic terms

\ 4

Q,, = 0 for plane waves, and small for narrow beams

Wochner, Hamilton, llinskii, and Zabolotskaya (JASA 2003)




Cubic nonlinearity

Without quadratic nonlinearity (narrow beams), coupled equations
assume KZK form:

ov, (3 0 s 9 n v, ¢ / T (0%, 0.\
= S 3- = d
Oz 3¢ 0T [ve(vz +v,)] + 2pc3 0T i 2 )_ o\ Oz? " 0y? !
v, 3 0 5 9 n 0%v, ¢ / T (0%, D%, ,
Yy 2 Y b d
0z 330t vy(va+0)] + 2pc’ 012 " oo\ 077 ! oyt )"

where v is particle velocity. —/

Wochner et al. (JASA 2003) x



Elliptical polarization

bla =0.25

Compressional Wave

05, \

\

\

Plane Wave
|
o
o
/

"o N\

\

Wochner et al. (JASA 2003)

Elliptically Polarized Shear \Wave
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Elliptical polarization

bla=0.25 QID Jy_

Compressional Wave Elliptically Polarized Shear \Wave
NNINRIAAIN Y.
Vo Vo Yo

AN\ ] |/ \/ V w | )

0 1 2 3 0 0 1 2 3

ﬁ'?ﬁhﬂﬂﬂﬂﬂ
) A

Plane Wave
|
o
o
/

Beam
|

NN Y VN

0 1 2 3 0 1 2 3 0
ot/2n ot/2n ot/2n

Wochner et al. (JASA 2003)



Surface Acoustic Waves



Nonlinear surface acoustic waves (SAWS) in isotropic solids:
Rayleigh waves

06
©2016, Dan Russell ;
_Im |
'; L
£ L
o
ol
[1h]
©
=
m —
=
—C o~
a
@
2 I
i (Athanasopoulos et al. 2000) 716
1 L 1 1 i 1 s 1 i 1 i 1 n 1 " 1 18
https://acoustics.byu.edu/animations-propagation#poissons-ratio Amplitude at depth z / Amplitude at surface

Fourier expansion of the particle displacement fields in the linear
approximation:

Uy (ZIZ' z, t Zun gtengtkz _|_776n£lkz) —inwo(t—x/cR) 4+ c.c.

n=1

1 — .
UZ(LU, z, t) _ 5 Zun(en&kzz 4+ glnenﬁlkz>e—znwo(t—x/03) + c.c.

n=1



Spectral evolution equation

To account for nonlinearity replace Fourier coefficients in linear
solution by slowly varying functions of time u,,(t):

ua;(:l:, z, t) v Zun gen&kz 4+ nenflkz) —inwo(t—x/cR) 4+ c.c.

u,(x,2,t) = 5 Z U (1) (€7 4 €mentika)eminwolt=a/er) | ¢ ¢
Hamiltonian mechanics is used with u, (t) interpreted as a

generalized displacement to obtain coupled spectral evolution
equations for slowly varying particle velocities v, (x) :

dv,  pwon :
d.f 2pCRC< Z Rmn mvmvm n ZRmn mUmUn— m) — A?’L Un

m=n-+1
| T J \ Y
difference-frequency sum-frequency
generation generation

Zabolotskaya (JASA 1992), Knight et al. (JASA 1997)



Time domain formulations reveal nonlocal nonlinearity

The evolution equation can be expressed in the time domain when
evaluated for the horizontal velocity component at the surface z = 0:

(%x - 7'1/7'2
5 C 87' 87‘// (x, 7 — m)vg(x, T — 7o) drydms

; TQ i
|
nonllnearlty as in fluids, nonlinearity is nonlocal due to
which is local to instant T integration over convolution of
in the waveform waveform with itself

It can also be expressed using Hilbert transforms:

U, 18°U%2 1 02U, oU,
0X 4 00° QH[UQCH[@@?”’ e =

’Hf]:%Pr/_oo tf(f)

Hamilton, llinskii, and Zabolotskaya (JASA 1995)

where




Energy method facilitates generalization to Stoneley and
Scholte waves

Az

Stoneley Wave

e

\J

Functional form of spectral evolution equation is unaltered:

dvn [Won
Rm ,n— mvmvm n Rm ,N— mUmUn—m o An27)n
] 33 )

Meegan, Hamilton, llinskii, and Zabolotskaya (JASA 1999)



Nonlinear surface acoustic waves (SAWSs)

harmonic
propagation curves

Stoneley wave: steel-glass

n=1

4]

0.8¢

A

Meegan et al. (JASA 1999)

2 4 6 8 1

Scholte wave: aluminum-water

n=1

horizontal velocity

waveforms

0.6

Stoneley wave:
steel-glass

Scholte wave:
aluminum-water

1.0
™15
1It 2n

Rayleigh wave:
steel
=0
0.5

1.0

1.5
n 2n

o(t-x/c)

0
o® -1
z

7,

0 2

vertical velocity
waveforms

1.5

Stoneley wave:
steel-glass

Scholte wave:
| aluminum-water

Rayleigh wave:
steel

n 2n
o(t-x/c)



Experimental confirmation in fused quartz

v, [m/s]

v, [m/s]

Laser-generated nonlinear Rayleigh waves with shocks

A Lomonosov and V. G. Mikhalevich

General Physics Institute, Russian Academy of Sciences, 117942 Moscow, Russia

P. Hess

Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg, Germany

E. Yu. Knight
Department of Physics, University of Californie—Berkeley, Berkeley, California 94720-7300

M. F. Hamilton and E. A. Zabolotskaya
Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712-1063

2093 J. Acoust. Soc. Am. 105 (4), April 1999
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Nonlinear piezoelectric surface acoustic waves (crystals)
Cormack, llinskii, Zabolotskaya, and Hamilton (JASA 2022)

Crystal Cut Particle Velocit . ,
A Wave Speed y Nonlinearity
(lithium niobate) (X, y, z components)
90 90 90
120 Z 50 120 1. 60 120 09 60 120 25 60
20
150 30 150 30 150 30 150 15 30
1 0.4 i
180 Y Cut X 180 0 180 (D 0 180 0
210 330 210 330 210 330 210 330
240 300 240 300 240 300 240 300
270 270 270 270
o0 %0
2 Y & 120 11 60 120 09 60 120
% 30 150 30 150 30 150 30
04
20 Z Cut X 180 0 180 %g 0 180 0
210 330 210 330 210 330
240 4 240 300
27 240 — 300 240 = o 270

Anisotropy dramatically affects both linear and nonlinear properties



Propagation along X axis (Y cut)
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Propagation along Z axis (Y cut)
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Nonclassical Elastic Media:
Sandstone



Nonlinear elasticity of sandstone

« Sandstone microstructure composed
of soft mortar binding stiff grains

* Previous studies probed sandstone
bars using resonance techniques and
strains of order 1 ystrain

» Observed elastic softening (~1%)
and “slow dynamics”

TenCate (Pure Appl. Geophys. 2011)

N N N
w o 0]
[42] o (s
[ = 4]

Resonance frequency (Hz)
&
no

grains

mortar

Berea sandstone

s

ON |OFF | ON {OFF

0 1000 2000 3000 4000 5000 6000

Elapsed time (s)

36



Slow dynamics
Traditionally studied in the frequency domain with resonance curves

1 0 1 ] I ] ] 1 I
Fontainebleau sandstone

Microstrain

0'.
1020 1040 1060 1080 1100 1120 1140 1160
Driving Frequency (Hz)

 Resonance curves are history dependent
 Memory manifests as softening

TenCate and Remillieux (Acoustics Today 2019)



Slow dynamics (time domain)

* Pendulum hammer generates large-amplitude longitudinal waves

» Laser Doppler Vibrometer measures longitudinal particle velocity
from flat end of rod and side-mounted reflectors

(@)

x=170cm 135cm 75¢cm 7cm Ocm

LDV

=Y

Q Q - Q \ !
. Sandstone |4_\

Impact (t = 0)
Trigger sensor

Muir, Cormack, Slack, and Hamilton (JASA 2020)



Pulse amplitude controlled by hammer drop height

Thomas Muir

End of
sandstone
bar

39



Hammer dropped from progressively greater heights

85 cm/sec
<—{ 130 pstrain
Quiescent ~8 on Richter scale

Slowness X Amplitude

A
£ 170
L m & @
t”D 135 cm
= — compressional waves
< — tensile waves
14
Y 75 cm ———
O
(/)]
2
Lu W
(7p] 7cm
| | | | | | | | | |
0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

TIME (msec)
(a) x=170cm 135cm 75cm 7cm  Ocm

Q Q) Q) |
S ]_4 X Sandstone I_‘

Impact (t = 0) Muir et al. (JASA 2020)




Elastic softening inferred from time-of-flight calculation

 Longitudinal wave speed computed ¢; = 2L/At;
from time between arrivals at far end

« Wave speed related to Young's
modulus E: — . AN

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

cg =+ E/p Time (msec)

Upeak = 6 cm/s

3200 ¢ _—

A
(010)

w

—

o

o
YO0

w
o
o
(=}

| Slow dynamics:

85 cm/s Young’s modulus

| recovers over several

| Young’s modulus | milliseconds (at least)
reduced by 17%

Longitudinal Wave Speed (m/s

1 2 3 4 5 6 7 8 9 10
Arrival Number

Muir et al. (JASA 2020)



Fractional (Lucassen) Surface Waves



Mechanical waves in the brain

Mechanical Wave

In the new view, a nerve signal is also
transmitted in the axon's membrane but
as a shock wave that travels down the axon.

As the wave front advances, it squeezes the lipid
molecules, briefly changing them from fluid to
liquid crystalline, making them bulge and release
heat. As the wave passes, the molecules revert back
to fluid form, narrowing and reabsorbing the heat.

Fox (Sci. Amer. 2018)

Displacement

Membrane potential

El Hady and Machta
(Nat. Commun. 2015)

“The existence of these [mechanical] effects
is not in doubt,” says Simon Laughlin, a
neuroscientist at the University of
Cambridge. “The question is whether neurons

actually use them to do something useful.”
(2018)




Linear Lucassen wave (Trans. Faraday Soc. 1968)

» Assume incompressible, viscous, liquid half-space bounded by a
thin elastic layer

» Linear model for propagation of the surface wave:

0% 03/2y
K2D@ — vV PH at3/2

u = particle displacement

p = density of liquid

1 = viscosity of liquid

Ksp = elastic modulus of layer

pop = mass density of layer

Kappler, Shrivastava, Schneider, and Netz (Phys. Rev. Fluids 2017)



Visualizing fractional operators

1

Wave o - oU ?ﬁ
propagation 0X? |0T?
Diffusive-wave X8 U U
(superdiffusion) 0X2 |9T3/2
e . o5/ - 0%U 8k[
Diffusion 5 = |53+

0X?2 0T




Visualizing Lucassen waves

. . *Not to scal
Displacement field D
0 T = Interface
N-01F — ! \l — ——
02 —
0 : 2 3 4 5 6
kx
. . *A imatel
Particle Trajectory oeode
. (approximately horizontal at surface)

04 -

0.8

1 | 1 1 1
0.6 0.4 0.2 0.2 04

:
0
kx

| |
0.6 0.8




Incorporating nonlinearity: KSSN equation

—— Experiment

Assume the surface elastic modulus 120 v = = Quadratic it ™

varies with wave amplitude: 100
ou ou\ E 30
KQD(U)%%()-I-/ﬂa—‘l-/iQ (6) % 60 - olb— . —
z L = 40 60 80
&40} a[A?]
20

0 | | . Iﬁ
40 50 60 70 80 90

Substitution into the previous linear
a [A?]

equation yields:

ou ou\ | 6%u 03/2q,
“Omax*’”(ax) }ax — VP

Kappler, Shrivastava, Schneider, and Netz (Phys. Rev. Fluids 2017)



Approximate evolution equation

* KSSN compound wave equation:

ou u\”| 0%u 03/2u
K +m(9—:c —I_@((?—x) }axQ = VPH 543/2

 New wave variable is interfacial compression:

ou
b=—
x
* Approximate evolution equation, computationally efficient:
I (pp/rg) "™ 0%y

0r 1 — (k1/2k0)¥ + (Ka/2k0)2 Ot3/4

Simon, Cormack, and Hamilton (JASA 2021)



Threshold phenomenon

* Electrical nerve impulses exhibit a threshold phenomena
* A similar behavior is shown for Lucassen mechanical waves

10

0.03

0.

(a)

| quadratic |
nonlinearity
dominates

Vol = 14 Batbo + B3

| B2 <0, B3>0

- Velocity increases
above threshold

cubic] .
— nonlinearity strain QPO
- dominates
- lg >
0.1 0.3 1 611,
- i - Oz
<+«—— Attenuation decreases

above threshold
strain 1)

Agk X l/Vpi;

03

0.1

Yo

0.3

Simon et al. (JASA 2021)

2 Threshold effect observed in
O mechanical surface wave

0.50A

0.67A

0.83A

=0.97

A6/6),

1.00A

T

b

Shrivastava and Schneider
(J. R. Soc. Interface 2014)



Numerical simulations of threshold phenomenon

Linear
(N,.N3) = (0,0)

0.5

At threshold
(N,,N,) = (-0.9,0.45)

(h) f

Above threshold

(N, Ny) = (-4.2,9.8)

Simon et al. (JASA 2021)

I =X
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A Paradox



A paradox

o . dp = O(pu)
Continuity equation: — 0
Ve ot T Ox
Take time average: (pu) =0
/
letp =po +p': (uy = — W) (exact)
PO

For any wave travelling to the right, (p'u) > 0, and therefore the
time-averaged velocity is negative: {u) < 0.

For example, if in the linear approximation u = u, sin(wt — kx) and
therefore p’ = (pouy/co) sin(wt — kx) , then (u) = —(uy)?/2c,.

2
o

(u) =

uq Sin wt

B 2(30

< < < <
< < < <
< < < <
< < < <
< < < <
< < < <
< < < <




In memoriam—University of Texas at Austin

Yurii llinskii | Evgénia Zabolotskaya David Blackstock
1936—2019 1935—2020 1930—2021



Blackboard from

D
; ( Cxin Einstein lecture at Oxford |
ool &L in 1931 ‘
NN
- 1/ f ;’

Ao dd History of Science Museum |
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